
Executive Summary

IT solution providers need to satisfy the demand
for the delivery of diverse services in the
short-term. Time-to-market when offering IT
solutions, IaaS or just provisioning infrastructure
is a key factor for the company’s
competitiveness. This requires companies to
utilize tools capable of providing the agility to
deliver new features, scalability, and
infrastructure anywhere almost instantly.

Historically, managing IT infrastructure has been
a manual process, which led to increased
operational costs, lack of instant scalability and
inconsistencies. With the advent of the concept
of Infrastructure as code, all these challenges can
now be easily overcome, with leading to benefits
like simplicity, accountability and improved
efficiency.

Terraform is a open-source
infrastructure-as-code tool created by Hashicorp
and Licensed through the Apache 2 License. By
using Terraform, end users can easily create
complex infrastructures anywhere, since
Terraform has a huge list of providers supported,
including Apache CloudStack.

The latest release of the Apache CloudStack
Terraform Provider, 0.4.0, is the first release
under the Apache 2 license.

This release includes the following changes:

 - Relicensing with Apache License v2.0

 - Validated and fixed all existing resource
creations to work as expected

 - Updated documentation on using and also
developing the provider

 - Bug fixes on syncing the data from
CloudStack

 - Fixed resource destroy using Terraform for
some resources

Terraform converts the Apache CloudStack API
into declarative configuration files and provides
the agility needed to serve different use cases
on top of Apache CloudStack.

Terraform - Automate Infrastructure on Any Cloud

Terraform is an open-source infrastructure as code
software tool that provides a consistent CLI
workflow to manage hundreds of cloud services.
Terraform codifies cloud APIs into declarative
configuration files.

Terraform allows infrastructure to be expressed as
code in a simple, human-readable language called
HCL (HashiCorp Configuration Language). It reads
configuration files and provides an execution plan of
changes, which can be reviewed for safety and then
applied and provisioned. Extensible providers allow
Terraform to manage a broad range of resources,
including IaaS, PaaS, SaaS, and hardware services.

SOLUTION BRIEF

SOLUTION BRIEF

CloudStack – A Turnkey Solution for Cloud and IaaS Builders

Apache CloudStack is the leading open-source
cloud orchestration platform. It is in use by many of
the world’s largest public and private clouds.
CloudStack is a multi-hypervisor, multi-tenant,
high-availability Infrastructure as a Service cloud
management platform.

Apache CloudStack is software that provides a
cloud orchestration layer, giving automation of the
creation, provisioning and configuration of IaaS
components (such as virtual servers). It turns an
existing virtual infrastructure into a cloud-based
infrastructure as a Service (IaaS) platform. The fact
CloudStack leverages existing infrastructure means
that the cost and time for an organisation to build a
multi-tenant IaaS platform is greatly reduced.

Terraform relies on a set of plugins known as
Providers in order to provision or manage
resources and cloud services. As part of the
integration of Terraform and Apache CloudStack,
Terraform requires a specific CloudStack provider,
which acts as a transition layer between
Terraform and Apache CloudStack. This provider
was written to provision and manage resources
such as virtual machines, networks, templates,
volumes etc., using the CloudStack APIs.

There are two main working components here:

• Terraform Core

• CloudStack's Provider

Terraform core is an engine which requires a
configuration file (*.tf) as an input. In this file
users define which cloud resources need to be
provisioned and managed.

This is where the HashiCorp Configuration
Language is used to prepare the configuration
file.

Terraform also uses the state file(*.tfstate) as
input. This file holds the state information of the
resources created or managed by Terraform. This
is created by Terraform core itself based on the
initial configuration. Afterwards, Terraform syncs
with CloudStack and keeps this state file up to
date. This data is used to create action plans
regarding what needs to be done in CloudStack
whenever the user tries to apply the configuration.

Once the user creates and confirms the action
plan, Terraform uses the provider to apply these
actions in Apache CloudStack. As a result, once
those are completed, Terraform fetches the
resource states and saves it to its state file.

Architecture – CloudStack and Terraform Integration

Terraform is an open-source infrastructure as code
software tool that provides a consistent CLI
workflow to manage hundreds of cloud services.
Terraform codifies cloud APIs into declarative
configuration files.

Terraform allows infrastructure to be expressed as
code in a simple, human-readable language called
HCL (HashiCorp Configuration Language). It reads
configuration files and provides an execution plan of
changes, which can be reviewed for safety and then
applied and provisioned. Extensible providers allow
Terraform to manage a broad range of resources,
including IaaS, PaaS, SaaS, and hardware services.

Technical Benefits Business Benefits
- Manage infrastructure across clouds

- Reproduce infrastructure easily across
hybrid environments

- Adding an automation layer on top of
Apache CloudStack, making cloud
deployment and maintenance much
easier

- Increased visibility on infrastructure
changes

Tamara Muryshkin
Enterprise Service Manager at Fraunhofer-Gesellschaft

CloudStack and Terraform bring scalability and flexibility.
The immediate benefit out of them is that you can have
tested and proven blueprints and roll out environments
quickly. Terraform is perfect for quickly creating Test/Dev
environments.

In distributed teams, collaboration is extremely important.
Infrastructure as code is a huge boost, helping teams to
collaborate on code.

- Open-source solution

- Decreased time in deploying
infrastructure

- Decreased operational costs

- Simple management of large
infrastructures

- Strong technical community

“We are excited to see this integration between Apache
CloudStack and Terraform. We observe an increasing number
of use cases for CloudStack that are being driven by
infrastructure automation and infrastructure repeatability.

Organizations also seek consistency across any cloud
platform: whether that is their internal infrastructure driven by
CloudStack or major public clouds. Terraform, along with
CloudStack, is a perfect fit for these use-cases!”

Giles Sirett
CEO of ShapeBlue
Chairman of CloudStack European User Group

SOLUTION BRIEF

Terraform relies on a set of plugins known as
Providers in order to provision or manage
resources and cloud services. As part of the
integration of Terraform and Apache CloudStack,
Terraform requires a specific CloudStack provider,
which acts as a transition layer between
Terraform and Apache CloudStack. This provider
was written to provision and manage resources
such as virtual machines, networks, templates,
volumes etc., using the CloudStack APIs.

There are two main working components here:

• Terraform Core

• CloudStack's Provider

Terraform core is an engine which requires a
configuration file (*.tf) as an input. In this file
users define which cloud resources need to be
provisioned and managed.

This is where the HashiCorp Configuration
Language is used to prepare the configuration
file.

Terraform also uses the state file(*.tfstate) as
input. This file holds the state information of the
resources created or managed by Terraform. This
is created by Terraform core itself based on the
initial configuration. Afterwards, Terraform syncs
with CloudStack and keeps this state file up to
date. This data is used to create action plans
regarding what needs to be done in CloudStack
whenever the user tries to apply the configuration.

Once the user creates and confirms the action
plan, Terraform uses the provider to apply these
actions in Apache CloudStack. As a result, once
those are completed, Terraform fetches the
resource states and saves it to its state file.

Use Cases

SOLUTION BRIEF

From the end-user perspective, service providers can offer a way for users to design and deploy their
own cloud infrastructure as code, more easily, using the Terraform CloudStack provider.

CI/CD Integration of Multiple Resources
from a Single Point

From a business continuity point of view, once the
virtual infrastructure is designed and deployed, if
any changes are required, users need to add the
necessary code with the desired changes to the
configuration file and apply it by using the
Terraform CloudStack provider. Terraform will
take care of the changes without interrupting the
services by adding the changes contained in the
code. This enables users to have a CI/CD policy
maintaining control over assets in the cloud.

As Terraform has a rich ecosystem of providers,
users can manage public DNS entries of load
balancer's IP addresses created on CloudStack.
They can also manage external firewalls when
using shared networks, add CloudStack instances
in their monitoring system and many more.

All these resources will be kept in the Terraform
configuration file and can be easily managed from
a single point.

Tamara Muryshkin
Enterprise Service Manager at Fraunhofer-Gesellschaft

Terraform is perfect for all innovative early adopters. It is the
beginning of large journey, which is recommended to
explore.

Future versions of this Terraform plugin should allow an
end-to-end infrastructure as code lifecycle for Apache
CloudStack infrastructure.

Key Outputs

- Best fit for orchestrating cloud services
like CloudStack, setting up cloud
infrastructure from scratch and managing
the existing cloud.

- Ensures that an environment is in its
desired state continuously.

Resources
https://github.com/apache/cloudstack-terraform-provider/wiki
https://registry.terraform.io/providers/cloudstack/cloudstack/latest/docs
https://cloudstack.apache.org/

*”Apache", "CloudStack", "Apache CloudStack", the Apache CloudStack logo, the Apache
CloudStack Cloud Monkey logo and the Apache feather logos are registered trade-
marks or trademarks of The Apache Software Foundation.

